Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nanomaterials (Basel) ; 11(4)2021 Apr 09.
Article in English | MEDLINE | ID: covidwho-1238924

ABSTRACT

Olive stone biochars (OSBC), both pristine and following magnetization (MAG-OSBC), were utilized as eco-friendly and cost-effective sorbents for the antituberculosis, clofazimine (CLOF). Morphologies, textures, surface functionalities, and thermal stabilities of both adsorbents were explored using SEM, EDX, TEM, BET, FT-IR, Raman, XRD and TGA analyses. SEM analysis showed meso- and macroporous surfaces. BET data showed that the MAG-OSBC possesses a larger surface area (33.82 m2/g) and pore volume. Batch adsorption studies were conducted following the experimental scenario of Box-Behnken (BB) design. The adsorption efficiency of both adsorbents was evaluated in terms of the % removal (%R) and the sorption capacity (qe, mg/g). Dependent variables (%R and qe) were maximized as a function of four factors: pH, sorbent dose (AD), the concentration of CLOF ([CLOF]), and contact time (CT). A %R of 98.10% and 98.61% could be obtained using OSBC and MAG-OSBC, respectively. Equilibrium studies indicated that both Langmuir and Freundlich models were perfectly fit for adsorption of CLOF. Maximum adsorption capacity (qmax) of 174.03 mg/g was obtained using MAG-OSBC. Adsorption kinetics could be best illustrated using the pseudo-second-order (PSO) model. The adsorption-desorption studies showed that both adsorbents could be restored with the adsorption efficiency being conserved up to 92% after the sixth cycles.

SELECTION OF CITATIONS
SEARCH DETAIL